WEBINAR : Unattended RF Measurement and Calibration for 5G Device Characterization and More

Unattended RF Measurement

June 3, 2021 (US/EU) | 9:00am PDT/ 6:00pm CEST

June 3 and 4, 2021 (US/ASIA) | 5:00pm PDT/ 9:00am China

Unattended RF MeasurementNew generations of 5G devices can have dozens of RF channels operating at high frequency, creating a need for a greater on wafer test volume. In engineering, more device tests are needed to support the expanded speed bands, increasing the workload to complete testing. How can test engineers manage the load? What if the probers could operate unattended — start a test and measure during a whole shift, overnight, or even over the weekend? There is a real, hands-free solution that provides fast, accurate measurements with high throughput — leading to more accurate design models and faster time to market.

Learn how an autonomous wafer probe system with integrated components from Keysight and FormFactor can:

  •  Automatically perform wafer and die soaks to get the probes quickly to consistent operating temperature
  • Quickly and automatically clean probes and then calibrate at mmw frequencies without user input
  • Adjust automatically to multiple probe-to-probe spacings for different device geometries in a single test run
  • Monitor calibration drift and recalibrate on the fly when necessary
  • Work seamlessly for full temperature range -60 to 175C operation using N5291A Solution, from Keysight technologies, providing single sweep operation of 900 Hz to 130 GHz, and beyond this using Virginia diodes Waveguide mini modules and waveguide probes


Unattended RF Measurement

WEBINAR : Delivering Advanced mm-Wave Load-Pull Measurements

Delivering Advanced mm-Wave

May 25, 2021 (US/EU) | 9:00am PDT/ 6:00pm CEST

 May 25 and 26, 2021 (US/ASIA) | 5:00pm PDT/ 9:00am China

Delivering Advanced mm-WaveThe ramp-up of 5G mm-Wave technologies comes with substantial enhancements in connectivity, promising to revolutionize our world. A fundamental requirement of 5G devices is to maximize performance by optimizing the power and/or effciency of the amplifiers and transistors. This is done by measuring the performance characteristics of the device at different impedances that are systematically changed using load-pull tuners.

FormFactor has partnered with Focus Microwaves and Keysight Technologies to deliver a fully integrated probe solution for accurate on-wafer mm-Wave load-pull measurements, delivering a number of benefits along the way, including:

• Low-Loss Measurement Channel for Maximized Tuning Range
• Accurate Probing of Small Pads for High Resolution with aPerfect Fit
• Coaxial Calibration with the Highest Phase Stability
• EMI and light-tight testing at a wide temperature range, including tests down to -40°C without a build-up of frost and condensation.

Join our webinar to learn more about our best-in-class tuning range performance with minimized insertion loss.

Delivering Advanced mm-Wave02

AZX Series of Regenerative AC and DC Power Sources

AZX Series

3500AZX parallel source

Are you seeking ways to conserve grid power—and thereby save money—in your equipment testing operations? Of course you are! The AZX Series, therefore, may be just what you’re looking for.

The AZX Series is a family of high-power, single-, split- and three-phase, AC, DC and AC+DC output capable power sources with full energy recovery to the AC mains when sinking power from the equipment under test. Think about that: full energy recovery. That’s a clear strategy for conserving grid power and saving money.

The AZX Series

AZX Series models range from 30-100 kVA. Using a modern color touch screen based user interface for ease of use, the AZX Series is cost effective and fully programmable for both basic frequency conversion and advanced AC power line or DC power disturbance test applications requiring up to 1000 Hz fundamental frequency.

AZX Series models

Key features of the AZX Series

  • Full power source and sink capability with energy recovery to the grid
  • 100% of the current and power rating in source and sink modes
  • Parallel configurations for higher power (see image above)
  • Three-phase, split-phase and single-phase output modes
  • AC, DC, AC + DC or DC + AC output capability
  • Dual constant power mode voltage ranges
  • Frequency range DC, 15 – 1000Hz or 1Hz – 15Hz in VLF mode
  • Phase angle programming
  • Precision output voltage and load regulation
  •  Metering of volts, RMS current, peak current, apparent power and true power on all phases
  • Harmonic measurements
  • Scope function to capture voltage and current waveforms
  • Sine, square, triangle, clipped sine and arbitrary waveforms selections
  • Output transient programming
  • Programmable output impedance
  • Standard USB, LAN (LXI), RS232 and GPIB interfaces
  • High-speed analog I/O for PHIL applications amplifier mode (Option H)
  • Electronic regenerative AC or DC load mode (Option L)

Key applications of the AZX Series

Regenerative grid simulation applications

Demand for renewable energy is growing rapidly, as is the need to test AC and DC products and systems that can recycle energy back to the grid. Regulatory and performance test requirements of these systems require an AZX power source for grid simulation. With extensive control over voltage, current, frequency, phase angles and transients, the AZX series supports testing of solar inverters (PV), energy storage systems (ESS), EV batteries and traction systems, as well as on-line UPS equipment with both AC and DC source and sink capabilities.

Regenerative grid

Avionics and defense power test applications

The AZX Series has a wide output frequency range, allows their use in avionics and defense power applications requiring either 400Hz fixed or 360Hz to 800Hz wild frequency output. For emerging battery backed DC avionics power systems, multiple 270Vdc outputs can be used to simulate a split 540Vdc aviation DC power bus. High-power, three-phase configurations are available to meet regenerative or conventional power test demands. As needs change over time, additional units can be added easily to keep up with your test needs while protecting your original investment.

About Pacific Power Source

Founded in 1971, Irvine, California-based Pacific Power Source was a pioneer in the development of solid-state power conversion equipment and continues to develop and manufacture both linear and high-performance AC power solutions that are technically advanced, reliable, and cost effective and feature fast transient response, tight regulation, high peak current capability, no switching noise (linear) and very low switching noise (PWM switching) models and low impedance. Markets served include test and measurement instrumentation, household appliance and consumer product manufacturing, military, aerospace, aviation, communication, industrial, computer and government agencies.


TDK Lambda SFL DC Electronic Load Series

TDK Lambda SFL DC1.jpg

TDK Lambda’s SFL DC Electronic Load Series was developed to provide an electronic load for the design, evaluation and manufacture of regulated DC power supplies, fuel cells, solar cells, batteries and components. Sales of the series commenced in July 2020.

Key features of the SFL DC Electronic Load Series

  • The SFL series is multi-functional, programmable and offers power levels of 300W (3U half rack) and 1000W (3U full rack) with high-speed response and stable operation at low voltage. The series also offers seven load operating modes that allow the user to connect and test products under various operating conditions.
  • There are two different dynamic operating modes: Dynamic Frequency Mode (allows the user to switch the load between two different settings for a single pulse or repeating pulse profile); and Dynamic Time Mode (allows the user to program up to 16 load settings that can be programmed for a repeating pulse profile). Both modes also provide a rear panel TRIG OUT function for waveform scope viewing or for synchronization with other test equipment.
  • A Sequence function is built-in where simple/complex waveforms can be created (up to 1024 time steps) using Excel-based control software and digital interface communication (USB or IEEE). A Sweep Mode feature is also available, allowing for product testing where devices/products require test sweeps in CR mode for V-I characteristic testing, CC mode for overcurrent protection characteristic testing or CP for overpower protection characteristic testing.
  • The SFL series has a V Mode function that automatically changes the load mode (when voltage is rising or falling) or turns off the load input until the load voltage reaches a set value, on-board memory for storage/recall of up to eight operational settings and a rear panel Remote Sense selection switch and connection ports for connection and voltage measurement across the test device.
  • Model functions can be set up via the 3.5” color LCD front panel display (which has oscilloscope-like function keys on the vertical and horizontal borders). Using these keys in combination with the four embedded operating allows for adjustment, setup, storage and recall of the load operating parameters. These model functions are also accessible via the built-in USB interface or the optional IEEE Interface.
  • Higher power DC load systems (up to 10kW) are achievable using a Master-Slave unit arrangement and a simple parallel cable connection from unit-to-unit, with all system control and monitoring performed through the master unit (for easy interfacing).
  • Multi-channel synchronous operation (with triggering) is also available and allows multiple DC electronic loads to be connected to separate devices by using the same parallel cable connection from unit-to-unit. Synchronized load ON/OFF and Dynamic operation are featured in a Master-Slave configuration with up to ten units (up to 10kW total).
  • Optional interfaces offered include the IEEE Interface (with a built-in DIDO Interface) and the Ripple Measurement Module (R ) Interface. The IEEE Interface is 488.1 compliant with instrument software drivers available for use. The DIDO  Interface allows for remote interfacing with PLC controllers and includes isolated control and status of load ON/OFF, Range setting, Alarm Detection/Clear and Sweep Function Pass/Fail status.
  • Models are available in 300W and 1000W power levels with Output voltages of 120V (60A and 180A) and 500V (18A and 36A) and are powered from a universal single-phase AC input (85~264VAC, 47~63Hz).

About TKD-Lambda

TDK-Lambda Corporation, a subsidiary of TDK Corporation, is a global supplier and recognized leader of power conversion products suited to many applications, including: medical, industrial, broadcast, defense, factory automation and LED/LCD signage. With global sales in excess of $500 million, they have design, manufacturing, and sales locations in Japan, China, EMEA, ASEAN, and the Americas. TDK-Lambda’s view is a “Power Supply” is more than just an electronic device. It is the “heart” of their customers’ systems and the core element of safety and reliability.


FL8000 Series of Electric Field Probes

FL8000 Series

What is an electric field probe?

An electric field (E-field) probe is a long, spherical probe-capped wand that detects unsafe levels of RF emissions and gives operators data on the electric field in an area. E-field probes are also used in anechoic chambers (rooms that completely absorb reflections of sound or electromagnetic waves), OATS locations (open air test sites) as well as other unique applications, such as monitoring emissions of aerospace and military systems. An E-field probe generally consists of a dipole antenna, readout device, RF detector and non-perturbing transmission line.

The FL8000 Series—a “3-in-1” solution

Launched in spring 2021, AR’s FL8000 Series of five E-field probes is a new generation of field probes that offer a “3-in-1” solution—the capability of measuring, with a single probe:

  • Continuous-wave electric fields;
  • Pulsed electric fields; and
  • Modulated electric fields.

Covering the 5 kHz – 60 GHz frequency range, this “3-in-1” solution represents the ultimate in E-field probe versatility for simplifying EMC testing in the lab. In the past this testing often required multiple field probes for measuring different types of electric fields in commercial, automotive, military, and aviation applications. This compromised lab layout and efficiency.

As AR CEO John Kim notes:

“We continue to raise the bar in probe testing functionality and integration to help our customers improve the layout and efficiency of their testing labs. With the unique combination of the wide frequency ranges, unmatched reliability, and multiple measurement types, the FL8000 Series is the single go-to solution for meeting a variety of EMC standards.”

The FL8000 series offers exceptional linearity and dynamic range performance to enable the accuracy required for even the most demanding testing. With fiber power connectivity, the FL8000 Series provides an easy migration path, all while delivering the reliability that has made AR the world leader in field monitoring.

FL8000 Series kits

The Field Probe kits contain a laser probe interface, and everything needed to operate its associated field probe.

FL8000 Series kits

FL8000 series highlights

  • Separable-axis field probe capable of measuring continuous-wave, pulsed and modulated electric fields
  • Use of laser to deliver power-over-fiber allows for continuous operation without recharging or replacing batteries
  • Correction factors from accredited ISO 17025 lab

About AR

Founded in 1969 and located in Souderton, Pennsylvania, Amplifier Research (AR) does business as AR RF/Microwave Instrumentation. The company is a leading supplier of RF/microwave benchtop and rack-mounted broadband, high-powered, solid-state RF and microwave amplifiers, antennas, amplifier modules, complete EMC test systems, EMI receivers, military communications booster amplifiers and more. AR has developed a strong customer base in a wide range of markets including communications, military, commercial, wireless, medical, automotive, aerospace, product compliance testing, research and education.





Unigraf webinar announcement – TMetrix brings the latest news & trends on Video Electronics Industry

Unigraf Webinar

Hosted by Unigraf CEO Henri Muhonen

Who Should Attend:

People interested in DisplayPort, USB-C, and HDMI development in Video Electronics Industry.

In this seminar, you will get the latest on:

  • Technological trends and features in HDMI 2.1, DP 2.0, USB-C
  • Introduction to HDR and USB4
  • Unigraf’s DisplayPort 2.0 development


Henri Muhonen

Henri Muhonen has been working in Video Electronics Business and Unigraf as CEO since 2016. He has more than 20 years of experience in the international B2B test and measurement equipment business. Henri has worked in the mobile phone and base station industry prior to Unigraf.

Henri Muhonen

Sergey Grushin

Sergey Grushin is the CTO of Unigraf. Sergey has an extensive background in DisplayPort technology. Sergey is the editor of VESA Link Layer compliance test specifications for DisplayPort.

Sergey Grushin

About Unigraf

Unigraf is a worldwide leading video electronics testing company. Unigraf specializes in Hardware and Software Test Tools for testing USB-C™, DisplayPort™, and HDMI™ interfaces. Unigraf’s technological strengths are the deep understanding of the interfaces in R&D, Test Automation and Compliance Test environments. Over the years Unigraf has introduced multiple grounds breaking innovations such as the first DisplayPort over USB-C test tool in UCD-340 and the first HBR3 capable DP 1.4 Test device in UCD-400.
Unigraf webinar announcement

Product Update Announcement Battery Tester BT3554-52 Pro Kit

Battery Tester BT3554-52 Pro Kit


Maintaining lead acid batteries for UPS stations requires the measurement of dozens to hundreds of cells, introducing potential human recording errors and time-consuming data management. Preventing the need to redo measurements and efficiently manage location data can help save time and increase efficiency. Hioki’s latest portable battery tester, BT3554-52, an update of the BT3554-50, helps streamline UPS and lead acid battery diagnostics with high-precision measurements and voice-guided capability.

BT3554-52 features

The Battery Tester BT3554-52 Pro Kit comes with new features that will help streamline measurements by providing operators the ability to input location information as well as applications-based audio guidance for measurement sequence and results.


About Hioki

Established in 1935, Hioki has grown to become a world leader in providing consistent delivery of test and measuring instruments through advanced design, manufacturing, sales and service. Click here for more information.

Battery Tester BT3554-52 Pro Kit

Regatron’s New G5.BT Battery Tester Series

Regatron AG

Based in Rorschach, Switzerland, Regatron AG has over 45 years of experience in electronics manufacturing and is known for its high-quality modular power supplies. Regatron thus fully appreciates the demands of working with high-power batteries and understands how essential it is to:

  • Monitor voltages, currents and temperatures and to keep them within a safe range; and
  • Pay close attention to polarity and voltage levels when connecting a battery to a load or battery tester.

Previously, batteries were relatively simple cell stacks. That certainly is not the case today. Batteries are now complex modules with superposed power electronics that require highly accurate data acquisition and fast response times.

What does the G5.BT battery tester series do?

Regatron’s G5.BT Battery Tester Series represents the latest development stage of the company’s DC power supplies. The series was developed in order to test energy storage devices and, in doing so, to meet the requirements outlined above. Some of the technology and exceptional features of the series that helps achieve the goals that inspired the series are outlined below:

  • Technologically advanced, fast switching, compact 19-inch power supplies
  • Current accuracy of <0.02% FS, additional high-resolution current measurement range
  • Voltage accuracy of 0.01% FS
  • Current rise time in the 50…200 µs range – even at higher power levels
  • Detection of reverse polarity connection
  • Overcurrent protection in case of unmatched voltages between battery and tester
  • Current ripple modulation up to 10 kHz
  • Wide current-voltage range with an auto-ranging factor of 3
  • CV, CC, CP, CR, and Ri-Sim control modes
  • Power regeneration and a high degree of efficiency

Regatron AG

Why you should purchase the G5.BT battery tester series

Ensuring that personnel are safe and equipment is protected is vital. The G5.BT series, therefore, includes the field-proven RPP feature that guards against the two main risk factors that come into play when a battery is physically connected to the battery tester:

1) RPP reliably prevents all serious damage caused by accidental reverse polarity between battery and battery tester.

2) RPP provides overcurrent protection/soft start in case of unmatched voltages between the battery and the battery test system. Another valuable function of the integrated RPP feature is the prevention of deep battery discharge at ‘Voltage Off’ state.

The G5.BT series is modular and features easy scalable systems. The modularity of the series allows it to be easily adapted to ever-changing test requirements. Not only is it possible to reconfigure between parallel, series, and mixed operation, but also to expand the system with additional power supply units or to split it into smaller units. In addition, the G5.BT series features power regeneration and a high degree of efficiency, resulting in significant reduction of energy consumption and heat dissipation. The purchase of a G5.BT Regatron battery tester is thus a solid investment that continues to deliver benefits over the long term.


The G5.BT Battery Tester Series is bidirectional regenerative and best suited for battery module/pack-testing in laboratory or test bench environments. The excellent current and voltage accuracy, the fast current rise time, and the powerful integrated CAN multi-protocol interface enable tests with a high temporal and electrical resolution. The specialized application software BatControl allows the user to set many test parameter values and even to define complex test procedures. Therefore, the versatile G5.BT series can be used for testing all types of batteries and energy storage systems.


Click here to learn more about Regatron’s New G5.BT Battery Tester Series or to request a quote.

Regatron’s New G5.BT Battery Tester Series

Aim-TTi’s QPX Series Bench / System DC Power Supplies

Aim-TTi’s QPX Series Bench

Aim–TTi is one of the world’s major producers of laboratory power supplies (PSUs). It has been a major technology innovator in PSUs since 1979 and offers products ranging from 30 watts up to 1200 watts. Hundreds of thousands of Aim-TTi power supplies are in everyday use around the world, a testament to the company’s strength and resolve in both research and development and production.

QPX Series: PowerFlex power supplies

The one word that comes to mind when assessing the attributes of the QPX series of power supplies is “flexibility”—at a level well beyond that of conventional laboratory power supplies. This flexibility opens the door to new opportunities for today’s engineers and translates to tremendous value for their companies, year after year.

Aim-TTi’s QPX Series Bench_1.jpg

A conventional PSU has a fixed current limit giving a power capability that drops off directly with the output voltage. With the Aim-TTi PowerFlex design, QPX power supplies make it possible to generate higher currents at lower voltages within an overall power limit envelope. It does this through use of a modified form of mixed-mode regulation. PowerFlex+ uses a multi-phase conversion technique to eliminate the need for a linear final stage and offers an even wider range of voltage/current combinations. QPX power supplies are ideal for both bench-top and system applications with front and rear terminals and a wide range of interfaces. They can, therefore, perform the task of many different power supplies, reducing the need for investment in other units. Indeed, flexibility is the operative word with the QPX series.

QPX series models also have 4 digit V/I meters and an analog end control, resulting in low noise and wrinkle levels.

The QPX series provides options for labs of all kinds. The QPX1200S & SP offer a current capability of 20 amps at the maximum output of 60 volts, and the PowerFlex design offers increased output current with reduced output voltage. The QPX600D & DP offer 1200 watts of maximum power, arranged as two isolated outputs of 600 watts each with PowerFlex+, offering a much wider flexing range of more than 61⁄2:1. The QPX600D can be operated as two entirely independent power supplies, each with its own display. Alternatively, multiple tracking modes are available including series and parallel operation which provide metering of total voltage or total current respectively.

Aim-TTi’s QPX Series Bench_2.jpg

News: new PowerFlex+ 750W DC laboratory power supply

Aim-TTi’s QPX Series Bench_5.jpgIn addition to the above models, Aim-TTi is proud to offer its new PowerFlex+ 750W DC laboratory power supply— the QPX750SP. The latest addition to the QPX series, the QPX750SP is a single output 750W unit housed in a compact 3U half rack width case with front ventilation and low noise fan assisted cooling. Front and rear power and sense terminals make it equally at home on the bench or in a rack.  The RM460 4U rack kit (available separately) houses one or two QPX750SPs with ½U rack spacing above and below providing full ventilation.

PowerFlex+ regulation means that the QPX750SP is capable of voltages of up to 80V and currents up to 50A within a 750W power envelope. A balanced multi-phase converter system minimizes ripple and improves dynamic performance. This provides unusually low noise for the power level, coupled with good transient response.

A comprehensive array of interfaces including USB, LAN/LXI and quasi-analogue are standard. GPIB is available as a factory or customer fit option. The QPX750SP is compatible with Aim-TTi Test Bridge software, providing graphical remote instrument control, logging and sequencing.


Click here to learn more about Aim-TTi’s QPX series of power supplies or to request a quote.

Aim-TTi’s QPX Series Bench / System DC Power Supplies