1 800 665 7301 | info@tmetrix.com

    • Current measurement from insulated probing of conductor
    • Suitable for observation and measurement of current in PCB tracks, component leads and ground planes
    • Wide dynamic range of 10mA to 20A peak to peak
    • Wide bandwidth of DC to 5MHz
    • Low noise figure equivalent to <6mA rms at full B/W
    • Safety rated to 300V Cat II (600V Cat 1)
    • Suitable for connection to any oscilloscope
    • High accuracy general purpose H-field probe
    • Converts to ‘closed magnetic circuit’ current probe

     

  • Precision LCR Meter with Component Fixture and Limits Comparator

  • Vehicle Charger (12V/24V) for PSA series spectrum analyzers

  • Pulse and Universal Generator 50MHz, single channel

  • Waveform Amplifier 30 volts pk-pk

  • The EME Guard Plus is a lightweight and robust personal protection monitor designed to ensure the safety of workers operating near electromagnetic field (EMF) emitters such as antennas, radars, and base stations. With a frequency range of 1 MHz to 40 GHz, this device continuously monitors and records EMF exposure levels while providing immediate audio, visual, and vibrating alerts when exposure exceeds predefined safety thresholds. Customizable alarm settings and a triaxial isotropic probe ensure accurate and reliable measurements.

     

  • The EME Guard XS Radar is a state-of-the-art RF safety monitor, specifically designed for workers operating near radar transmitters and antennas. With its isotropic tri-axis E-field sensors, this compact device provides continuous EMF monitoring over a frequency range of 1 MHz to 40 GHz, including short pulsed signal detection. Equipped with audio and visual alarms, it alerts users instantly when EMF exposure exceeds predefined safety thresholds, creating a safer working environment for military, aviation, and telecom personnel.

     

  • Solutions For:

    •  Accurate measurement with tri-axis sensors
    • Instant audio and visual alarm
    • Robust, reliable and user-friendly
    • Covers 5G / 6G bands, measuring up to 71 GHz

    User profile:

    • Persons working near antennas including installation and maintenance workers, broadcast, PMR and mobile phone operators or regulatory body employees

    Measurement capabilities:

    • Continuous monitoring of Electromagnetic Field levels with isotropic tri-axis E-field sensors
    • EMF Level indicated by a LED color scale
    • Audio and visual alarms triggered when EMF exceeds the reference level
  • The new G5.RSS series features

    • High control dynamics
    • An exceptional accuracy
    • A nominal output voltage of up to 3000 VDC
    • A wide current-voltage range with an auto-ranging factor of 3.
    • You get the best value for your investment.

     

  • High‐Resolution Portable TDR with Frequency‐Domain Analysis Tools

    Ideal for testing all types of microwave/RF and digital cables and connectors

    • Rugged portable TDR with S‐parameter tools
    • Resolves connector detail (<1 cm)
    • 75 μm (0.003 in.) cursor resolution
    • 16‐bit digital sampling at up to 250 KSPS
    • Stores thousands of TDR traces
    • USB host/client, 10/100 Ethernet
    • Lightweight, bright color screen
    • Internet streaming and remote control

     

  • Simplify Aging Aircraft Wiring Maintenance Using High-Resolution MOHR CT100 Series TDR Cable Analyzers

    • Designed for use with the high-resolution CT100 TDR Cable Tester
    • Ideal for TDR testing MIL-STD-1553B data bus aerospace cable assemblies
    • Detect and localize open, short, and partial cable and connector faults on the main bus and stubs
    • Detects cable and connector faults through 3+ transformer couplers
    • Simplifies troubleshooting of aging aircraft MIL-STD-1553 cable assemblies

     

    • compact and completely modular design
    • high effectiveness in all operation modes, few requirements on building infrastructure
    • ability to use an existing liquid cooling system directly
    • optional matched liquid-to-air cooling unit TC.LAE available
    • possibility of upgrading to systems of up to 1 MVA
    • high level of system dynamics, ≤ 5 kHz modulation bandwidth
    • non-restrictive capability of refeeding in the Q4 operation mode
    • possibility of operating as an autonomous 4-Q and 3-phase quasi-analogue amplifier
    • possibility of “Hardware-in-the loop”-operation (HIL mode)
    • user friendly application software with pre-configured test patterns
    • possibility of integrating into a complete SAS simulation and test system
    • galvanic isolation available as an option without derating the simulator port data

     

  • Bidirectional (source & sink), Regenerative 0…65VDC to 0…1500VDC, 20kW up to 1.5 MW 

    • cell system nominal voltage and type of chemistry
    • number of cells
    • internal resistance and associated parameters
    • cell temperature progression
    • allowed current
    • charge efficiency
    • energy computing and management facilities
    • time-dependent and functional dependent parameters

     

    • Setting of operational parameters for each output phase: (frequency, phase, voltage, basic waveform)
    • Defining functional blocks enabling a wide variety of modulation capabilities
    • Defining, editing and storing of even complex and long test sequences
    • Preview window for output voltage waveforms
    • LC load mode, definition of complex equivalent circuits
    • Hand drawing curve tool and FOURIER tool (harmonics synthesis)
    • TC.ACS provides an extensive safety concept in order to detect unwanted or off-limit conditions very quickly and to initiate controlled limiting or even a shutdown.

     

    • compact and completely modular design
    • high effectiveness in all operation modes, few requirements on building infrastructure
    • ability to use an existing liquid cooling system directly
    • optional matched liquid-to-air cooling unit TC.LAE available
    • possibility of upgrading to systems of up to 1 MVA
    • high level of system dynamics, ≤ 5 kHz modulation bandwidth
    • non-restrictive capability of refeeding in the Q4 operation mode
    • possibility of operating as an autonomous 4-Q and 3-phase quasi-analogue amplifier
    • possibility of “Hardware-in-the loop”-operation (HIL mode)
    • user friendly application software with pre-configured test patterns
    • possibility of integrating into a complete SAS simulation and test system
    • galvanic isolation available as an option without derating the simulator port data

     

  • Photovoltaic applications, the quality and technical data of the AC-DC converter is of primary interest. Solar installations are intended for a lifetime of roughly 20 years, therefore even fractions of a percent in efficiency will represent significant amounts of energy losses.