1 800 665 7301 | info@tmetrix.com

    • 3GHz RF analog signal generator
    • AM, FM, PM, Sweep & Pulse Modulation
    • Exceptionally Low Phase Noise of -145dBc/Hz @100MHz and 10@kHz offset
    • Field ready, with 10” touch screen suited for day and night use and 2 hour battery operation
    • Remotely programmable via MATLAB, Python, LabVIEW and other software programming environments.
    • Removable uSD card for instrument security

     

    • Customizable & savable test setups
    • Program & Datalog Storage
    • User Defined Temperature Limits
    • Local & Remote Operations
    • LabView™ drivers
    • IEEE-488, RS232 ports

     

     

    • 20 Amp Operation: Full performance with 20 amp service
    • Automatic Power Reduction: Reduces power usage during idle periods
    • Heat Only Mode: Reduces power usage when cold temperatures are not used
    • WhisperStream Technology: quieter, smooth-sounding operation, 56 dBA
    • Frost Free Test Environment: dry air purge for tester interface, prevents condensation:
      0.5 to 3scfm (0.25 to 1.5 l/s)
    • Heated Defrost: quickly removes moisture buildup from internal chiller
    • DUT Temperature Control : Proprietary control algorithm enables DUT temperature to be directly controlled
    • Transition Rate*
      -55 to +125°C, approx. 10 seconds
      125 to -55°C, approx. 10 seconds
    • System Airflow Output*
      4 to 18scfm (1.9 to 8.5 l/s) Continuous
    • Temperature Range*
      -80 to +225°C (60Hz) No LN2 or LCO2 Required

     

    • High reliability thermal cycling without thermoelectric modules
    • Temperature range: -65 to 175°C
    • Cooling power:
      • 40W at -40°C for lower power devices
      • 55W at -55°C and 120W at -40°C.
    • Transition rate: up to <35 sec over 25 to -40°C
    • Easy and secure thermal connection to in-circuit or test socked DUT
    • Touch-screen controller: user-programmable temperatures, graphing, data logging
    • Communications options: Ethernet, USB, IEEE, RS232

     

  • -60° to +200°C

    • Economy model with high thermal capacity
    • Precise temperatures with fast transitions from -60 to 200°C
    • No annual leak testing required per EU 517/2014 F-Gas Regulation
    • Effective testing and conditioning of electronic components, boards, and modules
    • Available for 50 and 60Hz operation
    • No need for Liquid Nitrogen (LN2) or Liquid Carbon Dioxide (LCO2)
    • Remote communications and set up and touch screen operation
    • User Defined Temperature Limits

     

     

    • High voltage output to 300Vp-p (±150V)
    • Output current to 150 mA
    • Full power bandwidth from DC to >500kHz
    • Slew rate to 200V/µs
    • Low distortion
    • Low cost
    • Custom Configuration of gain and signal Ground

     

    • Single channel
    • High voltage output to 400Vp-p (±200V)
    • Output current to 125 mA
    • Full power bandwidth from DC to >500kHz
    • Slew rate to 400V/µs
    • Monitor Output
    • Precise signal amplification for multiple applications
    • Compatible with any of the Tabor waveform generators

     

    • High voltage output to 300Vp-p (±150V)
    • Output current to 100 mA per channel
    • Full power bandwidth from DC to >500kHz
    • Slew rate to 200V/µs
    • Low distortion
    • Low cost
    • Custom Configuration of: Gain, Signal Ground

     

    • 12GHz RF Analog Signal Generator
    • Extremely fast switching speed of <100μs
    • AM, FM, PM Sweep & Pulse Modulation
    • Extra small, compact module platform
    • Exceptionally Low Phase Noise of -145dBc/Hz @100MHz and 10@kHz offset
    • SPI and micro-USB integrated interfaces
    • Remotely programmable via MATLAB, Python, LabVIEW
    • and other software programming environments.
    • Flixible modular platform for OEM and custom requirements
    • and applications, to satisfy specific customer demands.
    • Multi instrument synchronization capability

     

    • 3 GHz RF Analog Signal Generator
    • Extremely fast switching speed of <100μs
    • AM, FM, PM Sweep & Pulse Modulation
    • Extra small, compact module platform
    • Exceptionally Low Phase Noise of -145dBc/Hz @100MHz and 10@kHz offset
    • SPI and micro-USB integrated interfaces
    • Remotely programmable via MATLAB, Python, LabVIEW
    • and other software programming environments.
    • Flixible modular platform for OEM and custom requirements
    • and applications, to satisfy specific customer demands.
    • Multi instrument synchronization capability

     

    • 6GHz RF Analog Signal Generator
    • Extremely fast switching speed of <100μs
    • AM, FM, PM Sweep & Pulse Modulation
    • Extra small, compact module platform
    • Exceptionally Low Phase Noise of -145dBc/Hz @100MHz and 10@kHz offset
    • SPI and micro-USB integrated interfaces
    • Remotely programmable via MATLAB, Python, LabVIEW
    • and other software programming environments.
    • Flixible modular platform for OEM and custom requirements
    • and applications, to satisfy specific customer demands.
    • Multi instrument synchronization capability

     

  • The new G5.RSS series features

    • High control dynamics
    • An exceptional accuracy
    • A nominal output voltage of up to 3000 VDC
    • A wide current-voltage range with an auto-ranging factor of 3.
    • You get the best value for your investment.

     

    • compact and completely modular design
    • high effectiveness in all operation modes, few requirements on building infrastructure
    • ability to use an existing liquid cooling system directly
    • optional matched liquid-to-air cooling unit TC.LAE available
    • possibility of upgrading to systems of up to 1 MVA
    • high level of system dynamics, ≤ 5 kHz modulation bandwidth
    • non-restrictive capability of refeeding in the Q4 operation mode
    • possibility of operating as an autonomous 4-Q and 3-phase quasi-analogue amplifier
    • possibility of “Hardware-in-the loop”-operation (HIL mode)
    • user friendly application software with pre-configured test patterns
    • possibility of integrating into a complete SAS simulation and test system
    • galvanic isolation available as an option without derating the simulator port data

     

  • Bidirectional (source & sink), Regenerative 0…65VDC to 0…1500VDC, 20kW up to 1.5 MW 

    • cell system nominal voltage and type of chemistry
    • number of cells
    • internal resistance and associated parameters
    • cell temperature progression
    • allowed current
    • charge efficiency
    • energy computing and management facilities
    • time-dependent and functional dependent parameters

     

    • Setting of operational parameters for each output phase: (frequency, phase, voltage, basic waveform)
    • Defining functional blocks enabling a wide variety of modulation capabilities
    • Defining, editing and storing of even complex and long test sequences
    • Preview window for output voltage waveforms
    • LC load mode, definition of complex equivalent circuits
    • Hand drawing curve tool and FOURIER tool (harmonics synthesis)
    • TC.ACS provides an extensive safety concept in order to detect unwanted or off-limit conditions very quickly and to initiate controlled limiting or even a shutdown.

     

    • compact and completely modular design
    • high effectiveness in all operation modes, few requirements on building infrastructure
    • ability to use an existing liquid cooling system directly
    • optional matched liquid-to-air cooling unit TC.LAE available
    • possibility of upgrading to systems of up to 1 MVA
    • high level of system dynamics, ≤ 5 kHz modulation bandwidth
    • non-restrictive capability of refeeding in the Q4 operation mode
    • possibility of operating as an autonomous 4-Q and 3-phase quasi-analogue amplifier
    • possibility of “Hardware-in-the loop”-operation (HIL mode)
    • user friendly application software with pre-configured test patterns
    • possibility of integrating into a complete SAS simulation and test system
    • galvanic isolation available as an option without derating the simulator port data